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Abstract. We study effects of average degree on cooperation in the networked prisoner’s dilemma game.
Typical structures are considered, including random networks, small-world networks and scale-free net-
works. Simulation results show that the average degree plays a universal role in cooperation occurring on
all these networks, that is the density of cooperators peaks at some specific values of the average degree.
Moreover, we investigated the average payoff of players through numerical simulations together with theo-
retical predictions and found that simulation results agree with the predictions. Our work may be helpful
in understanding network effects on the evolutionary games.
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Social and economic systems – 05.10.-a Computational methods in statistical physics and nonlinear dy-
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1 Introduction

In natural and social systems, one of the most stun-
ning phenomena is the ubiquitous cooperative behavior
among selfish individuals, since defection actions usually
bring much more benefits. Yet, understanding emergence
and persistence of cooperation remains a challenge, which
has drawn many interests from natural and social scien-
tists [1–4]. So far, game theory has provided a powerful
framework to characterize and investigate the evolution of
cooperation [5,6]. One simple game, Prisoner’s Dilemma
game (PDG), has been considered as a general metaphor
for studying cooperation among identical and unrelated
individuals [7–10]. In the PDG, individuals can either co-
operate or defect to play the game; If they mutually coop-
erate, both get reward R; while mutual defection results
in punishment P to both. If one player cooperates while
the other defects, the cooperator gains the lowest sucker’s
payoff S, while the defector gets the highest payoff, the
temptation to defect T . Accordingly, the benefit order is
T > R > P > S. However, mutual cooperation in the orig-
inal one-shot PDG is unstable due to the highest payoff of
defectors, which is in sharp contrast to real observations.
Thus much effort has been paid to explain such contradic-
tion.

Since the groundwork on repeated or iterated PDGs by
Axelrod, much attention has been given to the repeated
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games and their suitable extensions, for cooperation can
be obtained in repeated games under some specific con-
ditions [4,10]. “Tit-for-tat” is a typical strategy which
can remarkably enhance cooperative behavior in repeated
games [4,11]. Another well-known rule leading to the high
cooperation level is the “win stay and lose shift” [12]. In-
terestingly, an original work by Nowak and May [13] re-
ported that the PDG with a simple spatial structure can
induce emergence and persistence of cooperation, espe-
cially the observed spatial chaos. Enlightened by this idea,
there has been a continuous effort on the effects of several
types of structures on the cooperative behavior, such as
regular graphs [14–21] and complex networks [22–30,21].
Understanding the effects of networks on the evolutionary
games taking place on them has been judged to be one
of the main goals in the study of games [9]. A surprising
finding is that cooperation is inhibited in the snowdrift
game (SG) by the spatial structure [31], which is sharp
contrary to one’s intuition, since the SG favors coopera-
tion compared to the PDG. In a recent paper, Santos and
Pacheco found that scale-free networks provide a unifying
framework for the emergence of cooperation [32,33], which
reveals that heterogeneous degree distribution plays a sig-
nificant role in the cooperative behavior. However, how the
other structural properties influence the cooperation and
which one contributes to the emergence and persistence of
cooperation remain unclear and need further study.

In the present work, we focus on the influence of
the average degree of networks on the evolution of the
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networked PDG. By adopting three types of networks,
i.e., scale-free Barabási-Albert networks (BA) [34], small-
world Newman-Watts networks (NW) [35] (a variant of
Watts-Strogatz small-world model [36]) and Erdös-Rényi
random graphs (ER) [37], we figured out that there ex-
ist optimal values of the average degree for each kind of
network leading to the best cooperation level. In paral-
lel, we found that the average payoff of individuals is also
a non-monotonous function of the average degree. Corre-
spondent theoretical predictions are provided for the aver-
age payoffs of all individuals. The present study indicates
that the average degree plays a universal role in evolu-
tionary games on three types of networks, i.e., scale-free,
small-world and random networks.

The paper is organized as follows. In the next section
we describe the evolutionary game model as well as three
types of networks in detail. In Section 3 simulation re-
sults and correspondent theoretical predictions are pro-
vided, and in Section 4 the work is summarized.

2 Model

Firstly, we construct networks using three typical models
— the BA, NW and ER Models. The former two possess
scale-free and small-world structural properties, respec-
tively. Here, all the network sizes are set to N = 5000
in all simulations for convenient comparison. The crucial
structural feature, average degree 〈k〉, can be adjusted by
model parameters in these models. In the BA model, the
parameter m, which denotes the number of edges of a new
nodes attached to the existent networks at each time step,
has a relation with degree, i.e., 〈k〉 = 2m [34]. In the NW
network, a parameter p controls the fraction of edges ran-
domly added to the regular ring graph. The relationship
between p and 〈k〉 is 〈k〉 = 2(m0 + p), where m0 repre-
sents the coordination number of each node on the ring
graph [35], we set m0 = 1. In the ER network, 〈k〉 depends
on a parameter pER, which characterizes the probability
of establishing an edge between any pair of nodes, where
the dependence of 〈k〉 on pER is 〈k〉 = NpER [37].

After constructing networks, each site of the network
is occupied with an individual. An individual can be ei-
ther a cooperator or a defector. All pairs of connected
individuals play the game simultaneously and gain bene-
fits according to the payoff parameters mentioned in the
introduction. Here, following previous work, we adopt the
rescaled version of payoffs as R = 1, P = S = 0, T = b
(1 < b < 2), such that the game is controlled by a single
parameter b for convenient investigation. The total payoff
of a certain player is calculated by summing the payoffs
over all its interactions at each time step. During the evo-
lutionary process, each player is allowed to learn from one
of its neighbors and update its strategy at each round. The
probability of a node i selecting one of its neighbors j is

Πi→j =
kj∑
l kl

, (1)

where the sum runs over the set of neighbor nodes of i. The
assumption of Π takes into account the fact that individ-

uals with more interactions usually cause more attraction
in society. In other words, well-known persons will have
more influences than the others.

Whereafter, the node i will adopt the selected neigh-
bor’s strategy with a probability determined by the nor-
malized payoff difference between them [18], i.e.,

W =
1

1 + exp[(Ei/ki − Ej/kj)β]
, (2)

where ki and kj respectively represent the degrees of
node i and j. Ei and Ej respectively represent the to-
tal payoff of node i and j, and β characterizes the noise
introduced to permit irrational choices. Here, β is set to
50. According to the evolutionism, W reflects the rule of
natural selection based on relative fitness. Besides, the ra-
tio of total income of a player and its degree Ei/ki is
defined as the normalized total payoff to avoid additional
bias caused by the variety of degrees.

3 Results

One of the key quantities for characterizing the cooper-
ative behavior is the density of cooperators ρc, which is
defined as the fraction of cooperators in the whole pop-
ulation. We study ρc as a function of the average degree
〈k〉 for three types of networks. In all simulations, ρc is
obtained by averaging over last 5 000 time steps of the en-
tire 10 000 time steps and each data point results from 10
different network realizations. Initially, strategies C and D
are uniformly distributed among all players. In Figure 1,
we report ρc as a function of 〈k〉 for different values of
b on BA, NW and ER networks, respectively. One can
find that ρc exhibits a non-monotonous behavior with a
peak at some specific values of 〈k〉. The larger value of
b corresponds to the lower value of ρc at the peak point,
which can be easily understood by noting the fact that
large value b favors selfish action, leading to the reduction
of the cooperation level. The common nontrivial behavior
shared by the scale-free, small-world and random networks
indicate that the average degree is a crucial feature for the
networked evolutionary game.

Whereafter, we explain the non-monotonous depen-
dence of ρc on 〈k〉. Actually, the effect of connectivity den-
sity on the cooperation over regular structures has been
investigated previously [33,38]. Our work can be consid-
ered as expanding previous investigations to non-regular
graphs. It has been known that the increase of the neigh-
borhood of individuals drives the extinction of coopera-
tors for a wide range of dynamics [38]. In our study, in the
case of very large 〈k〉, the system reproduces the mean-
field type behavior, so that the poor cooperation level is
inevitable. On the other hand, the study of the PDG on
one-dimensional networks has indicated that the coopera-
tion is strongly inhabited with only nearest neighbor inter-
actions [33]. Hence, for very low 〈k〉, cooperation will die
out, since the system is close to a one-dimensional system.
Combining the discussion of the two limits of 〈k〉, there
should exist an optimal value of ρc in the middle range of
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Fig. 1. (Color online) Cooperator density ρc vs average degree
〈k〉 on the (a) BA, (b) NW, and (c) ER networks for differ-
ent values of the parameter b. Simulation were carried out for
network size N = 5000. For the BA model, b ranges from 1.05
to 1.45 with a 0.05 interval; and for NW and ER networks, b
ranges from 1.025 to 1.25 with a 0.025 interval. The upward
curve corresponds to small value of b.

〈k〉, for ρc is quite poor in the limits of both very low and
high values of 〈k〉. Then, we study the maximum coopera-
tion level ρmax

c as a function of b for each type of network.
As shown in Figure 2, ρmax

c displays a decreasing trend
for each network and shows approximately the same de-
creasing velocity for NW and ER networks, which reveals

Fig. 2. (Color online) Log-normal plot of the peak value of
density of cooperators ρmax

C vs the parameter b in PDG for the
three types of networks.

that these two kinds of networks may have very similar
evolutionary dynamics.

We further concern the relationship between the aver-
age degree 〈k〉 and the average payoff 〈M〉 in the whole
population for different types of networks (BA, NW, ER
Networks). The average payoff is defined as

〈M〉 =
1
N

N∑

i=1

Ei, (3)

where Ei is the total income of individual i. Also we found
similar non-monotonous phenomena exhibited in the de-
pendence of ρc on 〈k〉. Simulation results of 〈M〉 versus
〈k〉 for different values of b with adopting the BA, NW
and ER network are reported in Figure 3. A phenomenon
should be noted that the optimal value of 〈k〉 correspond-
ing to the peak point of 〈M〉 is much higher than that
corresponding to the best cooperation ρmax

c in Figure 1.
This phenomenon can be explained by noting a fact that
more interactions usually bring more benefits even though
altruistic action will result from the increment of 〈k〉. As
〈k〉 further increases from the maximum point in Figure 1,
individuals will have more co-players, such that gain more
benefits from the game with all their counterparts. Thus
the augmentation of 〈k〉 will contribute to the average
payoff of the whole population. On the other hand, as ex-
hibited in Figure 1, increasing 〈k〉 induces more defection
actions, which will reduce the income of defectors’ cooper-
ator neighbors. Since the positive effect of increasing 〈k〉 is
much stronger than the caused benefit loss of individuals,
the optimal value of 〈k〉 at which 〈M〉 peaks is larger than
the value of 〈k〉 corresponding to ρmax

c . Furthermore, it is
also found that the maximum average payoff 〈M〉 of the
BA scale-free network is nearly 4 times larger than the
other two we’ve investigated. This result may due to the
higher cooperation level in the scale-free network.

In the following, we provide theoretical predictions for
the average payoff of individuals 〈M〉 by assuming co-
operators are distributed uniformly among the network.
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Fig. 3. (Color online) The average payoff 〈M〉 vs. the average
degree 〈k〉 for different values of parameter b in the cases of
the (a) BA, (b) NW, and (c) ER networks. Symbols are the
simulation results and curves are the correspondent theoretical
predictions. The network size N is 5000.

〈M〉 can be expressed as

〈M〉 = (1 − ρc) × 〈k〉 × ρc × b + ρc × 〈k〉 × ρc × 1, (4)

where the first term in the right side is the average payoff
of defectors and the second term is the average payoff of
cooperators. Equation (4) can be simplified to

〈M〉 = 〈k〉 × ρc × ((1 − ρc) × b + ρc). (5)

Since the density of cooperators ρc cannot be reproduced
by the mean-field approach, except for the well-mixed
cases(fully connected networks), ρc used in equation (5)
for calculating 〈M〉 is obtained by simulations, as shown in
Figure 1. The comparison between simulation results and
theoretical predictions is shown in Figure 3. In the case of
NW networks, analytical results are in very good agree-
ment with numerical ones. While in the cases of the BA,
in particular the ER network, theoretical predictions are
not in good accordance with simulations for low values of
〈k〉. The analytical results suggest that our approximation
with neglecting pair correlations is suitable for small-world
networks and for large average degrees of other types of
networks.

4 Conclusion

We have studied the evolution of cooperation in the pris-
oner’s dilemma game affected by the average degree of
different types of networks. We found the average degree
plays a universal role in the cooperation level in all types
of investigated networks, i.e., the density of cooperators is
a non-monotonous function of the average degree with the
cooperator density peaks at some specific values of the av-
erage degree. We have given a qualitative explanation for
this phenomenon. We have further studied the dependence
of the average payoff of individuals on the average degree,
and the similar non-monotonous behavior are observed.
Correspondent theoretical predictions are provided. An-
alytical results are well consistent with numerical simu-
lations in the case of small-world networks, while in the
cases of scale-free and random networks, there are some
difference between theoretical and numerical results for
small average degrees. In terms of systematically investi-
gations, we have clarified the effect of average connectivity
on the cooperate behavior over three types of networks.
Interestingly, the average connectivity plays a non-trivial
role in the cooperation, i.e, there exists the optimum aver-
age connectivity resulting in the highest cooperation level.
our work makes some contribution in the process of under-
standing network effects on the evolution of cooperation,
which still deserves further efforts.
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